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ABSTRACT
The inactivity time, also known as reversed residual life, has been a
topic of increasing interest in the literature. In this investigation, based
on the comparison of inactivity times of two devices, we introduce
and study a new estimate of the probability of the inactivity time of
one device exceeding that of another device. The problem studied in
this paper is important for engineers and system designers. It would
enable them to compare the inactivity times of the products and,
hence to design better products. Several properties of this probability
are established. Connections between the target probability and the
reversed hazard rates of the two devices are established. In addition,
some of the reliability properties of the new concept are investigated
extending the well-known probability ordering. Finally, to illustrate the
introduced concepts, many examples and applications in the context
of reliability theory are included.

1. Introduction and related work

The inactivity time has recently become a topic of great importance in reliability theory and
life testing applications (see, e.g., Ortega, 2009; Khanjari, 2008; Finkelstein, 2002; Kalbfleish
and Lawless, 1991; Ahmad, Kayid, and Pellerey, 2005; Ahmad and Kayed, 2005; Eryilmaz,
2010; Goliforsushani et al., 2012; Zardasht and Asadi, 2010; Chandra and Roy, 2001; Block,
Savits, and Singh, 1998; Li and Lu, 2003; Nanda et al., 2003, among others). Even if the inac-
tivity time has been mainly used in reliability, it has been useful to describe the behavior of
lifetime random variables in survival retrospective studies (Andersen et al., 1993, and some
applications have been derived in the risk theory), and econometrics (Eeckhoudt and Gollier,
1995; Kijima and Ohnishi, 1999; and Mi, 1999). An epidemiological research is concerned
with both, the instant of infections and the time elapsed since the moment till the time of
observation, that is, the mean inactivity time (MIT).

Based on the inactivity time function, various types of stochastic orders and associated
properties have been developed rapidly over the years, resulting in a large body of literature
(see, e.g., Nanda et al., 2003; Kayid and Ahmad, 2004; Ahmad, Kayid, and Pellerey, 2005; and
Li and Xu, 2006).

CONTACT T. H. M. Abouelmagd tabouelmagd@taibahu.edu.sa Management Information SystemDepartment, Taibah
University, Medina, Saudi Arabia.

©  Taylor & Francis Group, LLC

http://www.tandfonline.com
https://doi.org/10.1080/03610926.2017.1353624
https://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2017.1353624&domain=pdf&date_stamp=2018-03-06
mailto:tabouelmagd@taibahu.edu.sa


2 T. H. M. ABOUELMAGD ET AL.

Let X be a random variable with probability density function and distribution function
given, respectively, denoted by f (x) and F(x). Its reversed hazard rate (RHR) is defined as

τX (x) = f (x)
F (x)

The MIT is given by

m(t ) = E [t − X | X ≤ t] = ∫t
0 F (u) du
F (t )

Block, Savits, and Singh (1998) presented some properties of the RHR along with the affin-
ity to study parallel systems and reversed rate ordering in k-out-of-n systems. Finkelstein
(2002) considers the application of RHR and MIT to ordering of random variables with pro-
portional RHR model.

Chandra and Roy (2001) pointed out the growing importance of the RHR and analyzed the
relationship with respect to the monotonic behavior between the RHR and MIT, presenting
characterization properties.

Di Creszeno (2000) presented some interesting results on the proportional reversed hazard
model concerning aging characteristics and stochastic order.

Zardasht and Asadi (2010) studied the problem of estimating the probability that themean
residual life (MRL) of a random variable X exceeds the corresponding MRL of a random
variable Y .

1.1. Preliminaries

Zardasht and Asadi (2010) have considered the problem of estimating the probability that
the residual lifetime of a component whose lifetime is X exceeds that of a component whose
lifetime isY . The dual concept of inactivity time has not yet been addressed in the literature.
Thus, the aim of this paper is to fill this gap in the literature.

To this end, we consider two systems with lifetimes X and Y and assume that they have
failed at time t > 0.We raise the following question: what is the probability that, at time t, the
inactivity time X(t ) be greater than the inactivity timeY(t )? We denote this probability by (t ),
that is, η (t ) = P(X(t ) > Y(t )).

This article focuses on the study of η(t ), providing many of its statistical and reliability
properties. The study of the properties of η(t ) might be important for engineers and system
designers to compare the inactivity times of the products and, hence to design better products.

This paper is organized as follows. Section 2 obtains the form of η(t ) in terms of distri-
bution functions F and G. Survival properties of η(t ) are derived in this section. It is shown
that when the ratio of the RHRs of X and Y is a monotone function of time, then η(t ) is
also monotone function of time. It is proved that under the condition that the ratio of the
RHRs of X andY is known, η(t ) uniquely determines the distribution function F (and hence
the distribution functions of G). In Section 3, we define the concept of inactivity probability
ordering extending the probability ordering introduced by Mi (1999). In the other words, if
for all values of t , η(t ) ≤ 0.5, we say that the system with lifetime Y is better than the system
with lifetime X in inactivity probability. It is proved in this section that, when the failure
rate of Y is less than the reversed failure rate of X , at time t , then η(t ) ≤ 0.5. The closure
property of the proposed concept concerning the operation of the mixture of probability
distribution and the operation of the random minima is also studied. Finally, in Section 3,
we show that under some mild condition η(t ) ≤ 0.5 implies that X and Y are stochastically
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ordered. Section 4 is devoted to the estimation of η(t ), using the concept of U-statistics and
obtains the asymptotic distribution on the estimator.

2. Some properties of η(t )

Let X and Y be two independent non negative continuous random variables with survival
functions F and G, respectively. Let X(t ) = t − X |X < t and Y(t ) = t −Y |Y < t be their
respective inactivity times. Observe that

η (t ) = P (X(t ) > Y(t )) = P (t − X > t −Y |X < t, Y < t )

= ∫t
0 F (x) dG (x)
F (t )G (t )

= 1 − ∫t
0 G (x) dF (x)
F (t )G (t )

(1)

provided that F(t ) > 0 and G(t ) > 0.
Clearly, η(t ), as a function, measures the probability that the inactivity time of the system

with lifetime X is greater than the inactivity time of the system with lifetime Y at time t .
Some examples are given below.

Example 1. Let X andY followWeibull distributions with distribution functions

F (x) = 1 − e−
(
x
/
β1

)α1

, x > 0, α1 > 0, β1 > 0

and

G (x) = 1 − e−
(
x
/
β2

)α2

, x > 0, α2 > 0, β2 > 0

respectively. Then

η (t ) =
α2β

−α2
2 ∫t

0 xα2−1
(
1 − e−

(
x
/
β1

)α1
)
e−

(
x
/
β2

)α2

dx
(
1 − e−

(
t
/
β1

)α1
)(

1 − e−
(
t
/
β2

)α2
)

Figure 1 shows the graphs of η(t ) for different values of (α1, β1) and (α2, β2).
One can see, from Figure 1, that when both distributions are Weibull, with different com-

binations of the parameters onemay have a constant η(t ) or it may be increasing (decreasing)
for low or moderate values of t but converges to a constant as t tends to infinity.

For our next result, let ρ (t ) = τY (t )/τX (t ), for all t for which the ratio is well defined.

Figure . Graphs of η(t ) for the Weibull distributions in Example .
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Theorem 1. (1) η(t ) is increasing (decreasing) if ρ(t ) is increasing (decreasing), ∀t ∈ suppη.
(2) η(t ) is constant if ρ(t ) is constant ∀t. (3) η(t ) is a bathtub shaped with at most change
points τ ∗ < τ0, if ρ(t ) is bathtub shape (upside-down bathtub) with change point t0.

Proof. First note that η(t ) can be written as

η (t ) = ∫t
0 F (x) dG (x)
F (t )G (t )

= ∫t
0 F (x)G (x) τY (x) dx

F (t )G (t )
= ∫t

0 u (x) fm (x) dx
F (t )G (t )

where u (x) = ρ(x)
1+ρ(x) and fm(x) is the density corresponding to max(X,Y ).

Since x/(1 + x) is strictly increasing in x > 0, it can be concluded that the shape of ρ(x)
is the same as that of u(x). Thus, it is enough to show that the shape of u(t ) determines that
of η(t ). On the other hand, it is easy to see that the derivative of η(t ) is equal to

η′ (t ) = fm (t ) ∫t
0 [u (t ) − u (x)] fm (x) dx
[F (t )G (t )]2

(2)

The behavior of η′(t ) depends on the quantity [u(t ) − u(x)] in the integrand. If u(x) is
increasing (decreasing), then η′(t ) ≥ (≤)0. This proves part 1 of the theorem.

To prove part 2, note that, if for all x, u(x) is constant (and consequently ρ(t ) is constant),
then the term [u(t ) − u(x)] in Equation (2) is zero in the entire domain of the support. Thus,
it follows that η′ (t ) = 0, that is, η(t ) is a constant.

On the other hand, one can also easily see that

η′ (t ) = τY (t ) − η (t ) [τX (t ) + τY (t )] = [u (t ) − η (t )] [τX (t ) + τY (t )] (3)

This implies that when η(t ) is constant, then so is ρ(t ). This completes the proof of part 2.
To prove part 3, assume u(x) is minimum (maximum) at t0 and let

K (t ) =
∫ t

0
[u (t ) − u (x)] fm (x) dx

From Equation (2), it follows that for all t ≥ t0, K(t ) > 0, and hence η′(t ) ≥ (≤)0. This
means that if η(t ) has a minimum (maximum), it happens at a point before t0.

On the other hand,

K ′ (t ) = u′ (t ) F (t )G (t )

This implies that for all t ≥ (≤)t0, K(t ) is increasing (decreasing).
Thus, η(t ) has a minimum (maximum) at t∗ ≥ t0, if K(t ) has a change of sign before t0.

This also happens if P(X > Y ) < (>)
g(0)

g(0)+ f (0) when the ratio is well defined. Hence the proof
of part 3 is complete. �
Remark 1. From Equation (1) it is easily seen that when X and Y are identically distributed,
we have η (t ) = 0.5. From the proof of Theorem 1, it can be concluded that the converse is
also true. In other words, if

η (t ) = 1
2

, ∀t > 0, then ηX = ηY .

The following examples show some applications of Theorem 1.

Example 2. Let X andY have, respectively, the distribution functions

F (t ) = 1 − e−t0.2, t > 0 and G (t ) = 1 − e−t0.1, t > 0
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Figure . Plot of ρ(t ) for the distributions in Example .

Then, it follows that

ρ(t ) = 2t0.1(e−t0.2 − 1)
(e−4t0.1 − 1)

Figure 2 shows the plots of ρ(t ). The plot shows that ρ(t ) is increasing in t .

Example 3. Let X andY be exponentially distributed with respective distribution functions

F (x) = 1 − e−3x, x > 0 andG (x) = 1 − e−2x, x > 0

Hence

ρ (t ) = 3(e2t − 1)
2(e3t − 1)

Figure 3 shows the plot of ρ(t ) for the distributions in Example 3. The plot shows that
ρ(t ) is decreasing in t .

Remark 2. From Equation (3), it can be easily concluded that η(t ) is an increasing (decreas-
ing) function of t if and only if

η (t ) ≥ (≤)
τ Y (t )

τ X (t ) + τ Y (t )

Figure . Plots of ρ(t ) for the distributions in Example .
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Now consider a series system with two independent components. If X and Y denote the
lifetime of the components, then clearly the lifetime of the system is T = min{X, Y }. Cha
and Mi (2007) have considered the probability function p(t ) = P(Y = T |T = t ), that
is, the probability that component Y causes the system failure given that the system fails at
time t .

They showed that p(t ) is given by

p (t ) = τY (t )
τX (t ) + τY (t )

Thus, one can conclude that η(t ) is an increasing (decreasing) function of t if and only if

η (t ) ≥ (≤) p(t ).

The following theorem gives some bounds for η(t ), in terms of the distribution functions
of X andY , when they are stochastically ordered.

Theorem 2. (1) If Y≤stX, then η(t ) ≤ G(t )
2F(t ) . (2) If X≤stY, then (t ) ≥ 1 − F(t )

2G(t ) .

The proof is straightforward and is omitted.
Note that in part (1) the upper bound always lies in the interval [0.5, 1], and in part (2) the

lower bound lies in the interval [0, 0.5].

Theorem 3. Let Xi, i = 1, 2 and Y be non negative continuous random variables with
distribution function Fi and G, respectively. If X1≤rhrX2, then η1(t ) ≥ η2(t ), where ηi (t ) =
P(Xi < Y |Xi < t, Y < t ), i = 1, 2.

Proof. The assumption X1 ≤ rhX2 implies that X1(t ) ≤ stX2(t ), where

Xi(t ) = t − Xi|Xi < t, i = 1, 2

This implies that

η1 (t ) =
∫ t

0
F1(t ) (x) dG (x)

≥
∫ ∞

0
F2(t ) (x) dG(x)

= η2(t )

where

Fi(t ) (x) = Fi (x − t )
Fi (t )

, i = 1, 2

This completes the proof. �
Corollary 1. Let X(1), X(2), . . . ,X(n) denote the order statistics of a random sample from dis-
tribution F. Also, let

ηX(i) (t ) = P(X(i) 〈Y |X(i) < t, Y < t ), i = 1, 2, . . . , n

1. One can easily verify that

ηX(i) (t ) ≤ η (t ) ≤ ηX(i+1) (t )
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Hence, based on Theorem 3, we have

ηX(i) ≤ η (t ) ≤ ηX(i+1)

2. It is well known that for k = 1, 2, . . . , n − 1,
X(k) ≤ rhX(k+1) (for details, see, Shaked and Shanthikumar, 2007, p. 31).
Hence, based on Theorem 3, we obtain

ηX(k+1) ≤ ηX(k)

Example 4. Let X be a continuous non negative random variable with density function f and
a finite mean μ. The size-based random variable X∗ corresponding to X is a random variable
with density function

f ∗ (x) = x f (x)
μ

, x > 0

(see, Rao, 1997, for applications of size-based distributions). It can be easily seen that the RHR
of X∗ is given by

τ ∗ (x) = x
ω (x)

τ (x)

where ω (x) = E (X |X < x) , x > 0.
Since ω(x) ≤ x, we get τ ∗(x) ≥ τ (x). Hence, we have ηX∗ ≤ ηX .
The following example indicates that the converse of Theorem 3 is not, in general, true.

Theorem 4. If X and Y are two random variables with finite range, and if X is IRHR(DRHR)

and Y is DRHR(IRHR), then η(t ) is a decreasing (increasing) function of t.

Proof. We assume that X is IRHR and Y is DRHR. The same proof can be given for other
case. Based on definition, X is IRHR if and only if, for t1 < t2, X(t2) ≤st X(t1) , where X(t ) =
t − X |X < t . Thus, we have

η (t1) =
∫ t

0
F(t1) (x) dG(t1) (x)

≥
∫ t

0
F(t2) (x) dG(t1) (x)

=
∫ t

0
G(t1) (x) dF(t2) (x)

≥
∫ t

0
G(t2) (x) dF(t1) (x)

= η (t2) �
Theorem 5. If X is NBU and Y is NWU, then η(t1) < η(t2).

This proof is similar to the proof of Theorem 4 and is therefore omitted.

3. Probability ordering of residual lifetimes

Mi (1999), for comparing between the lifetime of systems, defined the concept of probability
ordering. Let X and Y denote the lifetimes of two systems. Y is said to be greater than X in
probability ordering (denoted byX ≤ prY ), if P(X > Y ) ≤ 0.5. (For some applications of this
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ordering, we refer the reader to Hollander and Samaniego, 2008.) In the following, we extend
the concept of probability ordering (pr) to the inactivity probability ordering (ipr) through
replacing X andY by the inactivity random variables X(t ) andY(t ), respectively.

3.1. Definition

Let X andY be non negative continuous random variables denoting the lifetimes of two sys-
tems. Y is said to be greater than X in inactivity probability (denoted by X ≤ iprY ) if, for all
t > 0, η(t ) ≤ 0.5.

The ordering ipr can be applied in some reliability problems. For instance, in burn-in pro-
cedures (refer to Block and Savits, 1997) components or systems are subjected to a period of
intensive use (or accelerated testing) for a period of time, say b > 0, before they are released
into general usage. Therefore, the lifetime of components that survive the burn-in procedure
is actually X(b) = b− X |X < b. Thus, the ipr ordering can be used for comparison between
successfully burned-in products.

Remark 3. Note that, η(t ) can be written as

η (t ) = ∫t
0 F (x) g (x) dx

∫t
0 F (x) g (x) dx + ∫t

0 G (x) f (x) dx

This implies that X ≤ iprY , if and only if∫ t

0
[F (x) g (x) − G (x) f (x)]dx ≤ 0

The inequality (4) can be written as∫ t

0
F (x)G (x) [τY (x) − τX (x)] dx ≤ 0

As an immediate conclusion of this inequality is the following.

Theorem 6. If X ≤ rhrY , then X ≤ iprY.

The following theorem gives a necessary and sufficient condition under which X ≤ iprY .

Theorem 7. X ≤ iprY, if and only if G(X ) ≤ mitG(Y )

Proof. Let Z = G(X ) and denote by αZ(t ) the MIT function of Z. Then, we have

η (t ) = αZ (G (t ))
G (t )

Now, X ≤ iprY implies η(t ) ≤ 0.5.
This in fact implies that, for t > 0, α(G(t ))

G(t ) ≤ 0.5 or equivalently, for

0 < u < 1, αZ(u) = 0.5u.

The right-hand side of the last inequality isMIT of a uniformdistribution on (0, 1). Since,
G(Y ) has uniform distribution on (0, 1). The proof is complete. �

Mixture failure populations arise in many fields of applied sciences. For example, in testing
the lifetime of systems in the reliability engineering, usually one deals with population that is
not homogeneous but rather is mixture of some sub-populations. In a general setting, let Fα

be the distribution function of the sub-populations where α is assumed to be non negative
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random variable with the distribution function H(α). Then the survival function of the
mixture Fα , with mixing distribution H(α), which we denote by F is defined as

F (x) =
∫ t

0
Fα (x) dH (α)

Now we have the following theorem.

Theorem 8. Let Xα be distributed as Fα andY be distributed as G. If Xα ≤ iprY, then X ≤ iprY,
where X is the random variable corresponding to mixture of Fα with mixing distribution H on
α, with survival function (5).

Proof. Let Xα be distributed as Fα andY be distributed as G. If Xα ≤ iprY implies that∫ t

0
[Fα (x) g (x) − G (x) fα (x)]dx ≤ 0,

this in turn implies that∫ t

0
[Fα(x)g(x) − G(x) fα(x)]

=
∫ t

0

[∫ ∞

0
(Fα(x)g(x) − G(x) fα(x))dG(α)

]
dx

=
∫ ∞

0

[∫ t

0
(Fα(x)g(x) − G(x) fα(x))dx

]
dH(α) ≤ 0

That is, X ≤ iprY . This completes the proof. �

Proportional odds family (also known as tilt parameter family) is a well-known family in
the literature (Bennett, 1983; Kirmani and Gupta, 2001; Marshall and Olkin, 2007).

Definition 1. Let F(x) be a distribution function and assume that F(x|p) is defined in terms
of F as follows

F(x|p)
F̄(x|p) = pF̄(x)

F(x)
, x > 0, p > 0

where p is called a tilt parameter, and F(x|p) is called proportional odds family.
It is easily seen that

F(x|p) = F(x)
p+ (1 − p)F(x)

, x > 0, p > 0

Now we have the following theorem.

Theorem 9. Let X, X∗, andY be distributed as F, F(x|p), and G, respectively, where 0<p<1.
If X ≤ iprY then X∗ ≤ iprY.

Proof.

ηX∗Y (t ) = ∫t
0 F(x|p)/(1 − p)F(x) dG(t )
F(t )G(t )/p+ (1 − p)F(x)

≤ ∫t
0 F(x)dG(x)
F(t )G(t )

= ηXY (t )
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This implies that when ηXY (t ) ≤ 0.5, then ηX∗Y (t ) ≤ 0.5, that is, if X ≤ iprY , then
X∗ ≤ iprY . �
Remark 4. There are situations where the life length may be considered as the extreme of
large number of iid random variables in which the number of variables are random. The
distribution function has also another natural derivation as follows: following Marshall and
Olkin (2007), let X1, X2, . . . be a sequence of iid random variables with common distribu-
tion function F, and suppose that N be geometric random variable independent of X ′

i s with
probability mass function

P (N = n) = (1 − p)n−1 p, n = 1, 2, . . .

Let X∗ = max{X1, X2, . . . , XN}, then it is easy to see that

P (X∗ ≤ x) = F(x)
p+ (1 − p)F(x)

= F(x|p)

Using this remark andTheorem9, we get that in the casewhereXi ≤ iprYi, for i = 1, 2, . . .,
then X∗ ≤ iprY.

Theorem 10. Suppose that η(t ) ≥ η (0) = P(X > Y ), t ≥ 0. If X ≤ iprY, then X ≤ stY.

Proof. From the assumption and proof of Theorem 7, one can write

αZ(G(t ))
G(t )

= η(t ) ≥ η (0) = αZ (0), for all t ≥ 0

This is equivalent to

αZ(u)

u
≥ αZ(0), for all 0 < u < 1

Since the MIT of uniform random variable is u/2, the above inequality is equivalent to

αZ(t )
αu(t )

≥ αZ(0)
αu(0)

where αZ(t ) and αU (t ) are the MIT functions of Z = G(X ) and U = G(Y ), respectively.
On the other hand, from Theorem 7 it follows that X ≤ iprY is equivalent to Z ≤ mitU. Thus,
the result immediately follows from versions of Theorems 1.A.3 and 2.A.3 of Shaked and
Shanthikumar (2007). �

4. Estimation of η(t )

In this section, we explore a non parametric empirical estimate of η(t ). Note that η(t ) can be
written as

η (t) = η1(t )
η2(t )

where

η1 (t ) = P(X < t < Y )

and

η2 (t ) = P(X < t, Y < t )
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One can estimate η(t ) by replacing η1(t ) and η2(t )with their correspondingU -statistics.

η̂1 (t ) = 1
mn

m∑
i=1

n∑
j=1

I(Xi < Yj < t )

and

η̂2 (t ) = 1
mn

m∑
i=1

n∑
j=1

I(Xi < t,Yj < t )

and manage to show that η̂(t ) → η(t ), in some sense.

5. Conclusion

This paper answers the following question: what is the probability that, at time t , the inactiv-
ity time X(t ) be greater than the inactivity time Y(t )? We denote this probability by η (t ) =
P(X(t ) > Y(t )) And study the properties of η(t ). We obtain the form of η(t ) in terms of dis-
tribution functions F and G. Survival properties of η(t ) are derived. It is shown that when
the ratio of the RHRs of X andY is monotone function of time, then η∗(t ) is also monotone
function of time. It is also proved that under the condition that the ratio of the RHRs ofX and
Y is known, η(t ) uniquely determines the distribution function F (and hence the distribution
functions ofG). We define a concept of X is greater thanY in inactivity probability extending
the concept of probability ordering given by Mi (1999). The closure property of the proposed
concept concerning the operation of the mixture of probability distribution and the opera-
tion of the randomminima are also studied. It is shown that under somemild conditions that
η(t ) ≤ 0.5 implies that X and Y are stochastically ordered. Finally, we leave an open ques-
tion about the estimation of η(t ) using the concept ofU -statistics. Furthermore, asymptotic
properties of the distribution of a derived estimator are another open area that needs to be
explored.
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